Prepared for: Holbrook Board of Health

DEXSORB®: New Technology for PFAS

Environmental Engineering Group January 20, 2022

CYCLOPURE.COM

CONTACT@CYCLOPURE.COM

Cyclopure Develops Adsorbents for Water Purification

Prior Work With Holbrook Water

Tri-Town Drinking Water Project - AECOM RSSCT

Tri-Town (Braintree Holbrook, and Randolph), MA

PFAS Characterization			
Compound	Concentration (ppt)		
Perfluorohexanesulfonic acid (PFHxS) ^a	2.65		
Perfluoroheptanoic acid (PFHpA) ^a	2.39		
Perfluorooctanoic acid (PFOA) ^a	<u>5.49</u>		
Perfluorooctanesulfonic acid (PFOS) ^a	<u>2.17</u>		
Perfluorononanoic acid (PFNA) ^a	0.71		
Perfluorobutanoicacid (PFBA)	3.94		
Perfluoropropane sulfonate (PFPrS)	0.25		
Perfluoropentanoic Acid (PFPeA)	4.93		
Perfluorobutanesulfonic acid (PFBS)	2.47		
Perfluorohexanoic acid (PFHxA)	4.12		
Perfluoropolyethers (PFPeS)	0.48		
Perfluorobutane sulfonamide (FBSA)	0.62		
Total PFAS	<u>30.22</u>		

PFAS6 Results for Randolph/Holbrook Joint Water Plant						
Quarterly Compliance Period	Monitoring Period	Sample Collec- tion Date	PFAS6 Re- sult (ng/L)	Quarterl y Average (ng/L)	PFAS6 MCL (ng/L)	
	Month 1	4/19/2021	18.8			
Quarter 2, 2021	Month 2	5/10/2021	18.5	19	20	
	Month 3	6/07/2021	20.1			
Quarter 1, 2021	Month 1	7/7/2021	23.4	25*	20	
	Month 2	8/3/2021	27.0			
	Month 3	9/8/2021	25.5			
* A quarterly average exceeding 20 is a violation of the PFAS6 Maximum Contaminant Level (MCL).						

Background Water Characterization			
Parameter	Concentration (mg/L)	RL	
Calcium [Ca ²⁺]	14.3	0.5	
Magnesium [Mg ²⁺]	3.3	0.5	
Potassium [K ⁺]	2.1	1.0	
Sodium [Na*]	73.5	2.0	
Chloride [Cl ⁻]	150.0	10.0	
Sulfate [SO ₄ ²⁻]	7.8	5.0	
Nitrate/Nitrite [NO ₃ -/ NO ₂ -]	0.027	0.050	
Total Organic Carbon (TOC)	2.3	1.0	

DEXSORB Adsorbents

Proprietary Technology: Corn-based DEXSORB®

Renewable Cyclodextrin Polymers

One-Step Synthesis: 1 g of DEXSORB = 3×10^{20} CD

cups

0 9

CYCLOPURE

Adsorption Mechanism: Host-guest Complexation

High Capacity

- $1 g = 3 \times 10^{20}$ cyclodextrin cups
- 1 kg = 5 kg of bituminous GAC in GW and DW in single use
- 1 kg > 25 kg of bituminous GAC in complex matrices

- - No impact from inorganic ions (too small to fit in cavities)
 - No impact from **natural organic** matter (too large to fit)
 - Equal PFAS removal in all matrices (molecular selectivity)

Adsorption Mechanism: Host-guest Complexation Size Inclusion Selectivity for PFAS

Future Proof Solution for growing list of regulated PFAS:

Fluorotelomer alcohol 4:2 FTOH, 6:2 FTOH 8:2 FTOH, 10:2 FTOH Fluorotelomer sulfonate 4:2 FTS, 6:2 FTS 8:2 FTS, 10:2 FTS Sulfonamides PFBSA, PFHxSA, PFOSA, 6:2 FTAB

DEXSORB Sorbent Processing

Powder

- High surface area
- Easy access to cavities
- High kinetics and capacity

DEXSORB[®] Purefast Filter for Brita Pitcher

Highlights:

- **\$40** for **80 gallons** treatment capacity
- DEXSORB for PFAS removal
- Equivalent to over 850 bottled water (12 oz)

Purefast Performance at NSF Challenging Levels

CYCLOPURE

Engineering Development

BRIDGING DEXSORB® Technology to Engineered Solutions

As-synthesized DEXSORB

Engineering Design

Packed Bed Filtration

Particle Size Distribution	Influent Flow Rate
Shape, Density, and Stability	PFAS Contamination Level
Empty Bed Contact Time	General Water Quality
Treatment Capacity	Target PFAS Removal

Cyclopure Packed Bed Filtration System

NSF.

Regeneration Solution Regeneration Solution Storage Tank Waste Tank

System Advantages:

- Flexible: Easy Deployment
- Scalable: Low to high MGD
- High Capacity: Long Use Cycle
- Sustainable: Regeneration
- **PFAS Destruction:** Isolate waste streams

Parameters	Per Vessel	
Vessel Internal Diameter (ID)	7" to 10"	
Vessel Height (L)	60″	
Empty Bed Contact Time (EBCT)	5 minutes	
Flow Rate	0.25 to 2.5 GPM	
DEXSORB Loading	10 to 40 lbs	
Treatment Capacity	Up to 1.5 M gal	
Operation Time	12 to 18 months	
Regeneration Cycles	5+	

DEXSORB PBF Coupled with RO Permeate and Concentrate

Treatment Scenarios:

- Municipal Drinking Water Treatment
- Industrial Wastewater Treatment
- Landfill Leachate Treatment

DEXSORB®

Lead Vessel

Buffer Tank

DEXSORB

Lag Vessel

CYCLOPURE

Powder DEXSORB for Batch Contact Adsorption

System Advantages:

- Short Contact time: Minimal contact time to equilibrium
- Simple Application: In-line dosing
- Efficient: Kinetics and capacity minimize material use rate
- **Easy Separation:** Easy separation from water by coagulation or ultrafiltration

CYCLOPURE

Industrial + Municipal

DEXSORB Environmental: First-Ever End-to-End Solution

NSF ANSI 61 Certified as Safe for Drinking Water Treatment

OFFICIAL LISTING

NSF certifies that the products appearing on this Listing conform to the requirements of NSF/ANSI/CAN 61 - Drinking Water System Components - Health Effects

This is the Official Listing recorded on February 3, 2021.

Chemical and Physical Characteristics

Polymer Structure	crosslinked cyclodextrin
Appearance	yellow powder or granule
Adsorption Mechanism	hydrophobic & electrostatic
Bulk Density (wet)	0.40 g/mL; 0.40 kg/L
Specific Gravity	1.1
Effective Size (powder)	20 to 150 µm
Effective Size (granule)	200 to 2000 µm
Thermal Stability	300 °C (572 °F)

Facility: Skokie, IL

	Process Media		
Trade Designation	Size	Water Contact Temp	Water Contact Material
Adsorption Media DEXSORB+ ^[1]	12 x 40 mesh	CLD 2	3 SYN

[1] This product is Certified for a maximum use level of 150 g/L.

DWTP RO Concentrate Treatment in North Carolina

Pilot Operating Conditions:

- Gravity filtration to remove PFAS from RO concentrate
- EBCT: 10 minutes
- Media Loading: 5 gallons; 17 lbs
- Operation: 9 months, > 200,000-gal

Gravity Filtration System at Greensboro DWTP

Groundwater Remediation at Former GM Site in Michigan

RSSCT: Excellent PFAS Removal + Capacity

Pilot Operating Conditions:

- EBCT: **5** + **5** minutes (Lead-Lag configuration)
- TOC 14.8 mg/L; High oil-and-grease content
- PFAS target: PFOS from 208 ppt to < 11 ppt

MI WQS Discharge Limits: PFOS 11 ppt; PFOA 420ppt Pilot System Scheduled for Q2 2022

Military Base PFAS Remediation in California

Joint Project with AECOM Sponsored by AFCEC BAA

Test Site and Operating Conditions:

- Travis Air Base in CA
- EBCT: 5 + 5 minutes (Lead-Lag configuration)
- Regeneration after 8-month operation

Field Installation Scheduled for Q2 2022

Landfill Leachate RO Concentrate Pennsylvania

Leachate RO Concentrate Treatment with Hydranautics

PFAS Level: 76,248 ppt

TOC: > 2000 mg/L TDS: > 5000 mg/L

CYCLOPURE

Wastewater Treatment Pilots

NASA WWTP

Operating since August 2021 PFAS Removal

Waternet WWTP

Q2 2022 19 OMPs Removal

Sustainable Disposal

DEXSORB+ Treatment Train

DEXSORB Minimizes PFAS Wastestream

Environmental Engineering Group

Group Expertise

Engineering System

- ✓ Bench-Scale
 - o Batch tests
 - o RSSCT Column tests
- ✓ Pilot-Scale
 - o Packed bed filtration system
 - o Fluidized bed system
 - Continuous stirred-tank reactor system
- ✓ Full-Scale System
- ✓ Fluid Dynamics and Hydraulic Modeling

Environmental Monitoring

- ✓ Grab sampling and passive sampling
- ✓ Suspect screening

Group Projects

PFAS Pilots

- HDR: North Carolina Gravity filter at DWTP
- GHD: Michigan PBF of industrial groundwater
- Tetra Tech: Virginia PBF for NASA WWTP
- AECOM: California PBF for Travis AFB
- Hydranautics: Pennsylvania Leachate RO concentrate

Micropollutants Pilot

• Witteveen + Bos: Netherlands – PBF for WWTP

Yuhan Ling Director, Environmental Engineering

Email: yling@cyclopure.com

- Dr. Ling **leads the application of DEXSORB** in engineered treatment systems and directs Cyclopure's Environmental Engineering pilot and field project program..
- He is an expert in the **design and implementation** of **adsorbents** in **water purification** applications, with extensive experience in the treatment of PFAS and other emerging contaminants.
- Dr. Ling is a co-inventor of DEXSORB, and received his Ph.D. in Environmental Engineering from Cornell University.

Selected Publications

First Author, *Chapter 14: Novel Cyclodextrin Polymer Adsorbents for PFAS Removal*, Forever Chemicals, 2021, Taylor & Francis Group, 291–313.

Co-Author, *Chapter: Water Quality in the Twenty-First Century: New Tools for the Characterization and Remediation of Emerging Chemical Contaminants*, Technology, Science, and Culture: A Global Vision, Volume II, 2020, IntechOpen, 27–41.

Ri Wang Environmental Engineer

Email: rwang@cyclopure.com

- Ms. Wang manages **municipal projects** involving use of DEXSORB for PFAS removal in drinking water, wastewater, groundwater, and landfill leachate.
- She has extensive experience in **advanced analytical methods** and manages Cyclopure's **environmental monitoring projects**.
- Ms. Wang has developed an advanced suspect screening method for PFAS, earned a Masters in Environmental Engineering from Cornell University.

Selected Publications

First Author, *Evaluating the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater with Different Adsorbents Using a Suspect Screening Approach.* Environmental Science & Technology Letters. 2020, 7, 12, 954-960.

Co-Author, *Evaluation, Optimization, and Application of Three Independent Suspect Screening Workflows for the Characterization of PFASs in Water.* Environmental Science: Processes & Impacts. 2021, 23, 1554-1565.

